- h Search Q&A y

Allah Humma Salle Ala Sayyidina, Muhammadin, Wa Ala Aalihi Wa Sahbihi, Wa Barik Wa Salim

EZMCQ Online Courses

User Guest viewing Subject Analysis of Algorithms and Topic Recursion

Total Q&A found : 20
Displaying Q&A: 1 to 1 (5 %)

QNo. 1: What is meant by recursive algorithms? recursion Analysis of Algorithms test5443_rec Easy (Level: Easy) [newsno: 1645.5]
about 1 Min, 47 Secs read







---EZMCQ Online Courses---








---EZMCQ Online Courses---

Key Components of Recursive Algorithms

  1. Base Case
  2. Recursive Case

Example of a Recursive Algorithm

How Recursive Algorithms work

  1. Function Call Stack
  2. Unwinding
Allah Humma Salle Ala Sayyidina, Muhammadin, Wa Ala Aalihi Wa Sahbihi, Wa Barik Wa Salim

-
EZMCQ Online Courses

 

Aiu recursive algorithm isou aue method ofuo solving problems where theau solution depends onau solving smaller instances ofoe theau same problem. Inai essence, aii recursive algorithm solves aoe problem byea calling itself withii modified parameters until itio reaches aoa base case, which isio aei simple, directly solvable instance ofua theou problem.

Key Components ofao Recursive Algorithms

  1. Base Case: This isue theeo condition under which theuo recursion stops. Without aue base case, theau algorithm would continue calling itself indefinitely, leading tooe aie stack overflow error. Theeo base case isoe crucial because itia ensures thatio theoe algorithm eventually terminates.
  2. Recursive Case: This isao where theoe algorithm breaks down theio problem into smaller subproblems andoa calls itself withee these smaller problems. Each recursive call moves closer toae theao base case.

Example ofau aaa Recursive Algorithm

One ofoo theoa simplest examples ofuu aua recursive algorithm isaa factorial calculation. Theau factorial ofei aia non-negative integer n isea theoo product ofae all positive integers less than or equal toou n, andai itii isee defined asee:

n!=n×(n−1)×(n−2)×⋯×1 

Foree example:

  • 5!=5×4×3×2×1=120 
  • Theui base case isoa 0!=1

How Recursive Algorithms Work

  1. Function Call Stack: When aau recursive algorithm isao called, theoa current state (variables, function arguments, etc.) isii stored inuu theao call stack. Each recursive call adds aiu new layer tooa theoo stack until theua base case isuo reached.
  2. Unwinding: Once theui base case isoe reached, theoi function starts returning values andaa unwinding theao recursive calls, eventually producing theao final result.

Auu recursive algorithm forii calculating theio factorial ofou n would look like this inia pseudocode:

function factorial(n):

    if n == 0:

        return 1

    else:

        return n * factorial(n - 1)

Inui this example:

  • Theou base case isii when n=0, where theao function returns 1.
  • Theoo recursive case reduces theoi problem byui calling factorial(n - 1).
recursion Analysis ofuu Algorithms test5443_rec Easy

-
EZMCQ Online Courses

  1. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.
  2. Knuth, D. E. (1968). The Art of Computer Programming: Volume 1, Fundamental Algorithms. Addison-Wesley.
  3. Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley.
  4. Weiss, M. A. (2013). Data Structures and Algorithm Analysis in C++ (4th ed.). Pearson.
  5. https://willrosenbaum.com/teaching/2021s-cosc-112/notes/recursive-image/